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In recent investigations control theory was applied to design electromagnetic fields capable 
of producing vibrational excitation in molecular systems. This approach has been applied to 
linear or non-linear classical approximations of molecular systems or to quantal systems using 
distributed cost functionals. Practical computations of molecular optimal control theory for 
large molecules especially with anharmonic potentials become difficult due to the increased 
dimensionality and the mixed nature of the boundary conditions. This paper proposes to 
approach the control design for such systems by treating a portion of the molecule containing 
the target and dipole bonds in full detail while the effect of the remainder of the system is mod- 
elled as a disturbance of limited energy. The optimal field minimizes the cost functional which 
is simultaneously maximized with respect to the disturbance. Such assumptions give rise to a 
robust controller akin to the Hoo theory of robust estimation. We investigate the various field 
designs for truncated harmonic systems associated with different disturbance energies and 
demonstrate that the existence of the solution to the associated Ricatti equation ensures the 
existence of the equilibrium game point. In addition, in the range of physically reasonable dis- 
turbance energy the optimal field could be accurately predicted from an asymptotic expansion 
involving only the undisturbed reference case. As an application we show the optimal field 
design for a 20 atom truncated molecular chain containing both the target bond (the 5th bond) 
and the dipole bonds (lst and 9th) where the disturbance only affects the end bond of the sys- 
tem attached to the remainder of the chain. In an effort to improve on the efficiency of the bond 
energy deposition we investigate shortened target times and also a 40 atom truncated chain. 
This approach presents very conservative estimates of possible disturbances but provides 
insight into the sensitivity of different configurations with respect to external disturbances. The 
minimax approach can be generalized to non-linear molecular systems by modelling the origi- 
nal system as a linear system plus an energy constrained disturbance. 

1 . In troduct ion  

A d v a n c e s  in l a se r  t e c h n o l o g y  h a v e  g e n e r a t e d  c o n s i d e r a b l e  in te res t  in the  selec- 

t ive  e x c i t a t i o n  o r  se lec t ive  v i b r a t i o n a l  m o t i o n  in p o l y a t o m i c  molecu les .  R e c e n t l y ,  
c o n t r o l  m e t h o d s  were  app l i ed  to  l inea r  a n d  n o n - l i n e a r  c lass ica l  a p p r o x i m a t i o n s  to  

m o l e c u l a r  s y s t e m s  as well  as ful ly  q u a n t u m  m e c h a n i c a l  t r e a t m e n t s  fo r  se lec ted  
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examples of rotational, vibrational and electronic degrees of freedom [1,2-5,6]. 
The atomic motion control of large polyatomic molecules requires the use of classi- 
cal mechanics for practical computational reasons, and the present paper will 
take this view [2-5]. Quadratic optimal control theory can readily provide explicit 
designs for laser pulses if the atomic motion can be approximated by a harmonic 
system [1,2,5] while distributed cost functionals can be employed to design control 
fields for fully quantal systems [4,7]. For larger molecular systems it would be desir- 
able to be able to achieve optimal design using only the important region contain- 
ing the target and dipole bonds, but the surroundings must be taken into account. 
Given the uncontrolled nature of the surroundings it is natural to consider their 
influence in a worst case scenario and model their effects as an energy constrained 
disturbance to the system under consideration. It is reasonable to characterize the 
surroundings or coupling by a mean energy so the robust optimal field is now 
defined as the minimum of this cost functional which has been maximized with 
respect to the energy constrained disturbance. This approach is akin to H ~  theory 
[8-11] in the sense that it designs the controlling field for the worst possible exter- 
nal disturbance. 

In section 2 we introduce the appropriate cost functional balancing the internal 
energy of a non-rotating harmonic molecule, the fluence of the optical field and an 
asymmetric terminal cost to ensure that the desired excitation is approached [1- 
3,5]. The game point for the optimal control field and the maximal disturbance are 
expressed in terms of the solution to the (control) Hamiltonian equations. The sec- 
ond variation must be calculated in order to confirm whether the solution obtained 
from the first variation is actually a minimax point. As in H ~  theory, the existence 
of the minimax point is closely related to the solution of a particular Ricatti equa- 
tion which depends on the Lagrange multiplier introduced with the energy con- 
straint [8,10]. The disturbance parameters corresponding to minimax solutions are 
bounded from below and we introduce a simple algorithm to determine the lower 
bound. Finally we investigate the behavior of the cost functional at the minimax 
point as a function of the disturbance. 

In section 3 we present examples of robust optimal design for the bond stretch 
of the 5th bond in a 20 atom truncated chain with two dipole active bonds. The dis- 
turbance affects the 19th bond (20th atom) which was originally attached to the 
remainder of the chain. The effectiveness of the optimal control field is discussed as 
a function of the disturbance energy. In addition, we discuss the similarity in opti- 
mal fields and worst case disturbances as a function of the energy constraint 
employing the asymptotic disturbance parameter expansion obtained in the pre- 
vious section. In the presence of physically reasonable disturbances the optimal 
field and the disturbance field both tend to retain their temporal form in compari- 
son with the undisturbed case, but with increased amplitude. Finally we discuss the 
results of the optimal control field for the same target and dipole bonds for a har- 
monic molecular chain truncated to 40 atoms. In the final section our conclusions 
will be presented and some future research indicated. 
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2. F o r m u l a t i o n  

In this section the robust control strategy is formulated for the bond stretch of 
a harmonic molecular system; extensions to anharmonic molecules can be formu- 
lated but at additional computational expense. The equations of motion are 
expressed in bondlength coordinates (stretch of the bonds) with the energy con- 
strained disturbance as an inhomogeneous term and we introduce the appropriate 
quadratic cost functional. The optimal controlling laser field and the worst case dis- 
turbance can be presented in terms of a linear differential equation with mixed 
boundary conditions depending on the Lagrange parameter associated with the 
finite energy constraint. The existence of the minimax point is shown to be related 
to the existence of a continuous solution to a Ricatti equation. 

Let the n bondlength displacement coordinates and their associated momenta 
of the truncated molecule be denoted as qr  = (11 ( t ) , . . . ,  qn(t)) andp r = ( / 7 1  ( t ) ,  . . . , 

pn (t)) respectively. The truncated molecule is affected by an energy constrained dis- 
turbance w(t) acting on some or all of the bonds. The disturbance models the influ- 
ence of the surroundings of the molecular system. The equations of motion for the 
complete system become 

d (q(t))= ( 0  Gn)(q(t)~+bu(t)+gw(t) (2.1) 
dt \p(t) -Fn 0 \p(t),] 

where F~ contains the force constants and G~ is the inverse mass tensor associated 
with the truncated system [1]. The external optical field u(t) (taken as having one 
component here) couples to the bonds where the input vector b (length 2n, with the 
first n elements as zero) is the dipole derivative vector associated with the mole- 
cule. The matrix g of 2n rows is determined by the forms of the truncation and cou- 
ples the appropriate bonds to outside disturbances modelled by the vector w(t). 

Since the disturbance w(t) is of bounded energy, we will consider only distur- 
bances such that 

21forrgT~Mwgw w(t) (t) dt = E ,  (2.2) 

where Mw is a positive definite matrix. In keeping with past experience the natural 
choice for Mw is a diagonal matrix with elements taken as (Gn)i/I . The objective is 
to design a minimum fluence optical field u(t) which directs the reduced n coordi- 
nate system in such a fashion that at some final time T the target bonds are close to 
the desired configuration (q(T)r,p(T) r) = ~7 r while a minimum energy is depos- 
ited in the remaining bonds throughout the time interval. To balance the excitation 
in the system, the fluence of the optical field and the cost for reaching the objective 
we introduce the cost functional ~(u, w): 

• (u,w) = ½ [x(t)rQx(t)+ru(t)2]dt+½(x(r)-rl)rt'z(x(r)-rl), (2.3) 



408 J.G.B. Beumee, H. Rabitz / Robust optimal control theory 

where Q is some appropriate positive definite matrix (usually the entries corre- 
sponding to the position and momentum of the target bond equal zero), ~c is a posi- 
tive definite matrix specifying the desired target weights, and x ( t ) ~ =  (q(t) 7", 
p(t) 7") [1,3]. Hence, the optimal laser field is defined as the field minimizing (2.3) 
which has been maximized with respect to w(t) under the provision of the con- 
straint (2.2) [1-3]. This construction provides and optimal laser field assuming the 
worst possible disturbance w(t) within the energy restraint. 

To obtain the minimax point under the constraint a Lagrange parameter/3 is 
employed such that we seek 

minumaxw ~(u ,w) -  ( 1  f w(t)rgrMwgw(t)dt_2 E , (2.4) 
k - l d 0  

where/3 (sometimes referred to as the disturbance parameter) will be chosen in 
such a fashion that the energy constraint (2.2) is satisfied. Notice that the optimal 
field becomes a function of the energy E only. A necessary condition for the mini- 
max point is that the first variation of the constrained modified cost functional 
equals zero, which yields the following expressions for the field and the distur- 
bance: 

u(t) = -r- l  bT A(g) , (2.5a) 

w( t) =/3-1 (gT"Mwg)-lgV A( t) ' (2.5b) 

where 

d ( x ( t ) ~ =  ( A  A~ ) ( x ( t ) )  (2.6) 
dt A(t)]  - a  - A  r \A(t)  ' 

with 

A# = -r- l  bb r +/3-1g(grMwg)-lg r , (2.7) 

and final condition A(T) = Pf(x(T) - rl). The Lagrange multiplier A(t) ensures 
that the minimax solution satisfies eq. (2). It will be assumed that x(0) = 0 for the 
sake of convenience. Obviously in the case that E = 0,/3 = oo and we have w(t) = 0 
so that the system experiences no disturbances and (2.5)-(2.7) reduce to the classi- 
cal optimal control problem. The equations above are familiar in time dependent 
Hoo theory [8,10,11 ]. 

For the minimax point or game point [8,12], it is required that 

• (u, rd) ~< ~(u, w) ~< ~(u', w), (2.8) 

for an arbitrary optical field u(t) t and disturbance w(t) ~, ifu(t) and w(t) are the solu- 
tions to eq. (2.5)-(2.7). However, solutions to (2.5)-(2.7) do not necessarily satisfy 
(2.8) for all disturbance parameters [3. The value of/3 at the minimax point (2.8) is 
associated with the following Ricatti equation: 
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T H E O R E M  1 

Let H(t) be a positive definite matrix and ~(t) a function satisfying 

d H ( t )  + H(t)A + ArH(t)  + H(t)A~H(t) + a = O, H(T)  = Pf,  (2.9a) 

d qb(t) + Ardp(t) - H(t)An~(t ) = O, cb(T) = -Pfr#, (2.9b) 

where Aa is defined as in (2.7). Then the state x(t) and A(t) (costate) in (2.5)-(2.7) 
are related as follows: 

A(t) = H(t)x(t) + ~b(t), (2.10) 

so that the optimal field and disturbance can be related directly to the state x(t) 
(feedback) 

u(t) = - r  -1 (II(t)x(t) + Oh(t)), (2. l la) 

w(t) = [ 3 - 1 ( g T M w g ) - l g r ( H ( t ) x ( t  ) + cb(t)). (2.1 lb) 

Proof 
The proof is straightforward once expression (2.10) is substituted into (2.6). 
In the absence of disturbances, in other words if/7 = ~ ,  the matrix A~ is nega- 

tive definite which guarantees a unique solution to the Ricatti equation under very 
general conditions [13,14]. If disturbances are present, however, the existence of a 
solution to eq. (2.9a) depends on the value of B. The following theorem explains the 
relationship between the solution to the matrix Ricatti equation and the existence 
of a game point: 

T H E O R E M  2 

Assume that the constant/3 in (2.9) is such that there is a continuous solution 
H(t) to the matrix Ricatti equation (2.9a) subject to the final boundary condition 
H(T)  = Pf and let ~b(t) be the solution to (2.9b). Then for any field u(t) and arbi- 
trary disturbance w(t) we have that the functional (2.3) can be written in terms of 
H(t) and ~b(t): 

2~(u,w) = [x ( t ) rQx( t )+ru ( t )E]d t+(x ( r ) -~ ) rp i ( x ( r ) -~  ) 

L =K(B) +/7 w(t)r(grMwg)W(t) dt 

/o L +r [u(t)+r-lbr(H(t)x(t)+¢(t))] 2 d t - B  .d(t) dt, (2.12) 
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where 

A(t)  = [w(t) - ~-l(grMwg)-lgr(H(t)x(t) + O(t))]r(grM~g) 

x [w(t) - / 3  -I (grMwg)-lgr(H(t)x(t) + q~(/))] 

K(~) = rlrPfrl + x(O)rH(O)x(O) + 2x(0)r~b(0) - cb(t)rA~(t) dt. 

Proof 
Let 

(2.13) 

I* = x(t)rII(t)x(t) + 2x(t)r~(t)] dt 

= .~r[Eu(t)brH(t)x(t) + r-lx(t)TiI(t)bbrH(t)x(t) + 2u(t)bTfb(t) 

+ 2r-Ix(t) TH(t)bb re(t) + w(t)Tg TlT(t)x(t) 

- ~-lx(t)rIl(t)g(grMwg)-lgrlT(t)x(t) 

- x(t)rQx(t) + x(t)rH(t)gw(t) + 2W(t)rgrqb(t) 

-- 2~3-1x(t) r H(t)g(gr Mwg)-X gr fb(t)]dt. (2.14) 

The  first four  terms in this equa t ion  are equal to 

/o /0 11 = r (u(t) + r-lbr(H(t)x(t) + ~b(t)) 2 dt  - r u(t) 2 dt  

- r -1 ~(t)rbbr#)(t) dt, (2.15) 

and  the remain ing  terms 

/0 h = - / 3  A(t )dt  + fl w(t)r(grMwg)W(t) dt 

/o + 8 -1 d,)(t)rg(grMwg)-lgrdp(t) dt, (2.16) 

so tha t  after some algebra 

I* = I1 + I2 [ru( t) 2 + x( t) r Qx( t) ] dt 

- ~b(t)rA~b(t) dt  + /3  w(t)rgrMwgw(t) dt. (2.17) 

Evalua t ing  I* in (2.14) shows that  
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I* = (x (T)  - r l )Tpf (x (T)  - rl) - rlTPfrl -- x(O)TII(O)x(O) -- 2x(0)T~b(0) 

= (x (T)  - r l )Tpf (x (T)  - rl) - rlTp/rl, (2.18) 

since it was assumed that x(0) = 0. This combined with (2.17) yields eq. (2.12) after 
some algebra. 

This equation immediately establishes a criterion for the existence of the game 
point of the cost functional. Since the disturbances are restrained to energy level E, 
the second term on the right-hand side of eq. (2.12) reduces to 2/3ET for all con- 
strained disturbances. If we denote u = u(t) and w = w(t) as the solutions to (2.5)-- 
(2.7) we see from (2.13) that 

¢'(u, w') <~ ¢'(u, w) ~ ~(u', w), (2.19a) 

• (u, w) = K(/3) + ~3E, (2.19b) 

where u(t)' and w(t)' are arbitrary input and disturbance fields, respectively. 
Notice that this reduces to ~(u, w) = consh + const2/~5 + ~E for appropriate con- 
stants. For a specific energy E there may be many different solutions/5 and if 
none of these are too small the last term in this expression dominates. As a result it 
follows that in most circumstances the worst case disturbance satisfying the energy 
constraint is associated with the largest/3. As in Hoo theory the continuous solution 
to the Ricatti equation (2.9a) exists as long as/3 is larger than a specific lower 
bound. If  Pf  -- 0, rl = 0 the lower bound equals the H ~  operator norm defined by 
the input and output relationship (2.1) [8,10,12]. 

In order to find the lower bound above for which all ¢?'s correspond to a continu- 
ous solution of (2.9a) we employ the following simple algorithm. First write 
H(t )  = V ( t ) W ( t )  -1 for some matrix combination V(t) ,  W(t ) .  Substitution into 
(2.9a) reduces to the following equation for V(t)  and W(t): 

d-tt V(t)  = - Q - A  r V(t)  ' (2.20) 

with final condition I I ( T )  = V ( T ) W ( T )  -1 = Py. The  most convenient choice is 
to take W ( T )  = I,  the unit matrix, and V ( T )  = Pf .  A solution to eq. (2.20) always 
exists but the determinant of the matrix W(t)  is not necessarily non- zero. If the 
determinant vanishes on the interval [0, 7"] clearly no continuous solution to the 
Ricatti equation can be obtained. 

This approach allows for the following algorithm: 
- Choose a value for/3u that is large so that a continuous solution to the Ricatti 

equation exists and a value of/3t so small that a continuous solution does not ex- 
ist, for instance,/3t = 0. 

- Let/32 = ½(/3- - ~t) and determine a solution to eq. (2.20) on [0, 7"]. 
- Calculate det[W(t)] on [0, T] and determine whether this function stays posi- 

tive. If this is the case the lower bound must be between/3t and the newly deter- 
mined/31 so we take ~u =/31 and return to the previous step. 
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- If  det[W(t)] changes sign on [0, T] we take/3t =/31 and return to the second 
step. 
In this fashion the series of parameters/31,/32, • •. converges to the lower bound 

associated with the existence of the solution of the Ricatti equation. The disadvan- 
tage of this approach is obviously that the whole interval must be scanned for the 
values of the determinant. For large matrices the numerical values of the determi- 
nants can become very large and also the accuracy of the estimate becomes a func- 
tion of the grid size on which the determinant is calculated. Some experimentation 
with different grid sizes suggested that our estimates of the lower bound in the 
examples are accurate to three decimal places. 

In our examples we will find that the physically significant energies are asso- 
ciated with large/3 so it is of interest to determine the solution to (2.5)-(2.7) for 
asymptotically large values of the disturbance parameter. Clearly the zeroth order 
is the original unperturbed control problem since then w ( t ) =  0 according to 
(2.5b). To obtain the next order in the expansion we have the following result: 

THEOREM 3 

For  large values of/3 we find 

A(t) = eH~(t-T)M1 + fl-l[_eHuTM1 + eH~(t-T)M2] + 0(/3-2), 

where 

M1 = \ p f ( P c l S c _  ~7 ) , 

u2  = \Fspc(Qpcl& re) ] 
Here 

L O e _ n , r  In 

Qc = [In0]S(0)e -H'T PS ' 

° ) 
psr/ ' 

(o) 
Tc = [InO]S(O)e -Hut p f  , 

(2.21) 

(2.22a) 

(2.22b) 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 
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and I, is the unit matrix of dimension n. Also 

S(t) era(t_,) 0 g(gr g)-lgr = e H"s dt 
0 

A -r-lbb r 
Itu= -Q -A r ,]" 

413 

(2.24) 

(2.25) 

Proof 
Separating the terms in (2.6) that depend on/3 it is found that 

d_d__(x(t)) = ( A - r - l b b r ) ( x ( t ) )  
dt A(t) - Q  -A r k, A(t) 

so that 

(2.26) 

(x(,) (x(r) ( 
where H. is the unperturbed (control) Hamiltonian matrix (2.25) and S(t) is 
defined in (2.24). Introducing the mixed boundary conditions x(0)= 0 and 
A(T) = Pf(x(T) - fl) for the vector (x(t) r, A(t) T) it is clear that to first order 

(x(O) x(t) (X(0) )--- KA(O))= [lz'-~-'S(O)le-H'r (A(t)) 
I, 

= (I2,-- /3-1S(O))e-tI'r[( pf )X(T) -- ( 2 • )  ] . (2.28) 

Multiplying on the left and right sides of these equations with the matrix [I,0] 
yields 

[InO](12n -- /3-1S(O))e-H~r ( ; )x(T)  = [InO](l~ -- /3-1S(O))e-S~r ( pOfr I ) , 

(2.30) 

from which x(T) can be determined. This expression is equivalent to 

(Pc -/3-1Qc)x(T) = Sc -/3-1Tc, (2.31) 

where Pc, Qc, So, Tc are defined in (2.23). Inverting the matrix (Pc - /3  -1Qc) to first 
order in/3-1 yields 

x(T) = p[1 [Sc +/3-1 (Qcp[Isc _ To)I, (2.31) 
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~(T)  = (PfPcISc  - Pfrl) + 13-1Pf(Pc I QcP2ISc - P2: Tc). (2.32) 

Substituting this into (2.27) and collecting the first order terms in/3 -1 then yields 
(2.21). 

In the next section we illustrate this approach by designing robust control fields 
for the stretching of the 5th target bond in a 20 atom truncated linear chain. We 
will discuss the effects of  changes in the cost functional parameters,  the shortening 
of  the target time and the change of truncation on the control field. The worst 
case estimate tends to be conservative and we will present a brief discussion on this 
issue; further details can be found in ref. [2]. 

3. Example s  

In this section we illustrate the design of robust control fields for the bond 
stretch of the 5th bond in a truncated 20 atom homogeneous linear harmonic  chain 
(all a toms are of  mass m = 10 amu) using a balanced cost functional with a large 
final cost. An analogous calculation is also presented for a 40 a tom truncated 
chain. The dipole bonds are the 1 st and 9th bonds of the chain located at the same 
distance from the target bond. We investigate the robust optimal control field 
design as a function of disturbance energy, chain size and target time. 

We desire to reach the above objective with a relatively small field so we choose 
r = 7 as a moderate  weight on the fluence. The input dipole coupling vector b only 
has non- zero elements for the 1 st and 9th bonds of  values bl = 0.295, b9 = 0.25. 
The system energy weight is chosen as Q = I2~ 24 diag(Fn, Gn) (the diagonal matrix 
elements of  F~ and G,), where F,  and G, are defined as 

(Gn) O. = 60(2/*) - 6i(j+l)# - (5i0-1)#, (3.1a) 

(Fn)ij = 60"ki, ( 3 . 1 b )  

for i , j  = 1, n where ki are the force constants and # = 1/m. This band diagonal 
matrix representation for the mass tensor is due to the use of  bondlength coordi- 

T ,(5,24) nates [3]. taere, ~ is the (2n-dimensional) unit matrix with zeros on the diagonal 
at entry 5 and 24, the elements in x(t)  that  correspond to the position and momen-  
tum of  the target bond. These elements are set equal to zero because our motive is 
to concentrate as much energy in the target bond as possible. 

All physical quantities in our examples are expressed in terms of  atomic units. 
The parameters in the final cost are chosen as r/5 = 3.0, P:(5,  5) = 2000 (other 
entries zero) to force the bond stretch of the 5th a tom close to 3.0 at the target time 
T. Also the nth element of  the vector g is g, = 1/m with all other entries equal to 
zero. The form of  this vector is a direct result of  t runcation of  a longer chain where 
the equations of  mot ion  are expressed in terms of  bondlength coordinates [3]. 
Notice that  because the bondlength coordinates were introduced before the chain 
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was truncated, the disturbance enters as an added momen tum rather than as an 
additional force. If  explicit external forces were considered, then force terms would 
appear in eq. (3.1) and not  all entries g,+l, g2~ would have vanished. A sequence of  
examples is given below. The parameters given above apply to all the cases except 
that  the chain length and target bond differ in some examples. 

(i) In the first example without external disturbance (i.e., fl = oo) we assume 
that  the final time is T -- 0.2 ps (8268 a.u.) and that  the truncated system has 20 
atoms (n = 19). Figure 1 presents the energy of the chain (in a.u.) as a function of  
time and bond number for the optimal control field u(t) displayed in fig. 2. The cost 
functional for this example at the minimax point equals ~(u*, w* = 0) = 6303 a.u. 
which is mostly due to the large final cost. Since the bonds 1 and 9 are the same dis- 
tance from the target bond, the main effort of  the optimal field is to produce a large 
signal close to the final time T i 0.2 ps so that  the pulses travelling from the two 
dipole bonds would combine at the target bond simultaneously. The earlier pump-  
ing phase is to position the atoms of the chain in the most  favorable fashion for 
the final pulse close to the target time. The efficiency of the process is high in the 

0 . 4 0  

>,, 

k_ 

C 
bJ 

0 . 3 0  

0 . 2 0  

0 . 1 0  

f 

% -  < ' -  

Fig. 1. Bond energy as a function of time and bond number for the system example (i) pumped by a 
designed optimal field in the absence of disturbances. The target bond is number 5, the dipole coeffi- 
cients bi for the ith bonds are bl = 0.295, b9 - 0.25, the final time is T = 0.2 ps, the weight on the flu- 

ence equals r = 7, and the mean bond energy is Ear = 22.8 x 10 -4 a.u. (see eq. (3.2)). 
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Fig. 2. The designed optimal field for the time interval T = 0.2 ps without disturbances for the case 
in fig. 1. 

sense that  the amount  of  energy concentrated in the target bond at the final time 
is high in comparison with energy located elsewhere in the chain. To relate the dis- 
turbance energy constraint in the subsequent calculations to the mot ion  of  the 
unperturbed system we have taken as a reference the mean energy per bond that  
travels through the chain as the field manipulates the dipole bonds. In our example 
this equals 

m [ T I ~  t r d 
Eav --- 19--T q(t) -~q(t) dt : 22.8 x 10 -4 a.u. (3.2) 

d O  k , ~  

In the present case this equals about 350 cm -l ,  which is rather small due to the 
fact that  the chain is weakly perturbed most  of  the time. The larger pulses are pro- 
duced close to the end of  the time interval and do not  contribute much  to the inte- 
gral. In the examples that  follow we compare (3.2) with the disturbance energy 
constraint.  

(ii) Figure 3 refers to the bond energy as a function of  time and bond number  
and figs. 4 and 5 present the optimal control field and the worst disturbance field 
for the case that # = 1600. In fig. 3 we see that the energy disturbances in the chain 
in the 1st and 3rd bonds almost equal the energy concentrat ion at the target bond 
5 at time T = 0.2 ps. In this case Ear = 1.9 × 10 -4 a.u. which corresponds to a dis- 
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Fig. 3. Bond energy as a function of  t ime and bond number  for the system example (ii) pumped by a 
designed opt imal  field in the presence of  a worst  case disturbance constrained to an energy of  
1.94 x 10 -4 a.u. (9% of  the mean  bond energy,/3 = 1600). The physical system is the same as for fig. 1 

except now with the disturbance. 

turbance energy that equals approximately 9% of the average bond energy of the 
reference case. The cost functional evaluated at the minimax point increased by 
almost 30%, the fluence more than doubled and the final cost of the stretch 
increased by about 22% in comparison with the reference case. This case has 
reached the point where allowing more intense disturbances will produce larger 
energy fluctuations throughout the chain rather than in the target bond and further 
calculations with a smaller disturbance parameter/3 confirmed this. Comparing 
fig. 4 and fig. 2 we see that the optimal fields are quite similar but not exactly alike 
as can be seen from the structure of both fields around 0.1 ps. Notice that the lar- 
gest disturbance in fig. 5 occurs at the very beginning of the time interval and there 
is a large pulse at 0.14 ps that obviously intends to interfere with the 9th dipole 
bond. This latter pulse reduces the final bond stretch and therefore enlarges the 
final term in the cost functional. The purpose of the large disturbance pulse in the 
beginning is probably to create a large disturbance in the chain and increase the sys- 
tem energy term in the cost functional. In addition, this disturbance has time to 
reach bond 1 and affect the coherence generated by u(t) at that bond. 

The similarity between the optimal control fields in fig. 2 and fig, 4 is due to the 
rather large size of the disturbance parameter ~ as can be shown as follows. In eq. 
(2,21) we obtained the behavior of the solution to (2.5)-(2.7) in the form of an 
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Fig. 4. The designed optimal field for the time interval T = 0.2 ps for the worst case corresponding 
to fig. 3. The field is similar in form to the optimal field presented in fig. 2, but more intense. 

r~ 

10  

O0 

- l , 0  

S i 
I 

o,o o, !  o 2  

Time (ps) 

Fig. 5. The worst case disturbance under the constraint that the energy equals 1.94 x 10 -4 a.u. (i.e. 
the case of fig. 3). 
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asymptotic expansion in/3-x, assuming a large disturbance parameter. If, for exam- 
ple, in (2.21) the matrices M2 and S(t) were proportional to the unit matrix then 
in the regime where/3 is sufficiently large we have that x(t) and A(t) scale directly 
with 1 + const//3 so that the optimal field and the disturbance field are propor- 
tional to e H~(t-T) [1 + const//3] and (1//3)e H.(t-T) [1 + const//3], respectively. For the 
optimal field u(t) this is exactly the unperturbed solution times a scale factor. 
According to this expression the intensity of the disturbance changes proportional 
to/3-1 (first order) and the optimal field scales with 1 + const//3. This assumption 
is easily tested and we modeled the maximum intensity of the optimal fields and dis- 
turbance fields for various different/3's in a second order approximation for the dis- 
turbance field and a first order approximation for the optimal control field as 
indicated above. As a result we were able to make predictions with 2-5% accuracy 
of the maximum intensities of both. This behavior may confirm the plausibility of 
the assumptions on M2 and S(t), although other relations amongst the matrices of 
(2.21) will also give the same scaling results. 

The approximate scaling between the competing fields u(t) and w(t) in the two 
cases has some interesting physical implications. This suggests that for a mildly dis- 
turbed system the control field for reaching a molecular objective is approximately 
a more intense version of the field obtained for the reference case. Hence the intui- 
tion of "trying harder" by increasing the intensity of the laser field is to first order 
a correct approach. The changes in the (control) Hamiltonian in (2.6) as a function 
of/3 generally are responsible for the change of shape of the fields (rather than its 
scale) and clearly for such large/3 values the Hamiltonian does not change enough 
to significantly alter the shape of the field and disturbance. In different harmonic 
systems for different objectives it may not be possible to find such convenient scal- 
ing laws. Since the explicit expressions are known to second order and can be 
obtained to higher order with a certain amount of perseverance, it can be deter- 
mined beforehand whether or not it is valid to use the scaled up version of the unper- 
turbed control field. If scaling were valid, a simple law will then provide the 
optimal control fields countering any disturbances that are present. For ultimate 
experimental purposes this may be of considerable significance. 

To determine the parameter/3 as a function of the disturbance energy we have 
to solve (1/mT) f~ w(t) a dt = E and if there are multiple solutions for/3 the solu- 
tion with the largest cost functional corresponds to the minimax point. However, 
the behavior of the disturbance energy as a function of/3 can be very complicated. 
Figure 6 shows the disturbance energy (1 ~roT) fo ~ w(t) 2 dt as a function of/3 in the 
case where the dipole bond is the first bond and the target is the 10th bond of the 
chain. In the region where/3 is sufficiently large the energy is a monotonically 
decreasing function of/3, and in the vicinity of 1240 the value of the energy 
increases dramatically while the figure shows a peak around 1180 as well. Going to 
smaller values of/3 showed a rather dense array of peaks while the function never 
drops below 0.169 x 10 -4 a.u. The slowly varying lower bound to all the peaks has 
some variation around 1050 and 280 and then as the point 0.67 is approached the 
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Fig. 6. The disturbance energy (1~roT) E w(t) 2 dt as a function of the disturbance parameter/3 for 
the intervals 0.67-17 and 1125-1450. At a higher value of energy there are clearly multiple values offl 

with only one corresponding to the minimax value. 

lower bound starts to rise and the number of  peaks increase rapidly. In all the 20 
a tom truncation examples the physically reasonable energies only had one solution 
for/3 but this is not  true for the 40 atom truncation case we investigated. For  a 
further discussion on this topic see [15]. Our calculations also showed that in all the 
20 a tom truncated chain examples above in general the very worst case, i.e. the lar- 
gest cost functional, corresponds with the largest/3. In fact, a careful consideration 
of the function K(/3) in (2.19b) shows that  ¢(u*, w*) = constl + const2//3 +/3E. If  
the multiple solutions for/3 are all sufficiently large it is clear that  ~(u, w) is maxi- 
mized for the largest/3 for a given energy E. 

Finally in an at tempt to limit the effect of the disturbance, the target time was 
reduced to T = 0.06 ps. Al though the optimal control strategy for pumping  was 
slightly different from the field presented in fig. 4, the same level of  relative distur- 
bance (approximately 9%) once again caused a significant effect in the molecule. 
At T = 0.06 ps there is still sufficient time for the disturbance to propagate  inward 
and affect the target bond. 

(iii) In the next example we improved the bond site energy deposition efficiency 
by truncating the chain at the 40th bond rather than at the 20th while the target still 
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resides at bond 5. The disturbance directly affects only the 40th bond and is not  cap- 
able of reaching the 9th bond in the short target time of T = 0.06 ps. The bond 
energy distribution of  the reference case with/3 = c~ was similar to that  in fig. 1 
with an optimal field similar in form to the last 0.06 ps of u(t) in fig. 2. One differ- 
ence is the lack of  time for any rebound energy off of bond 40 and back to the target 
bond. Choosing the parameter/3 = 401.35 corresponds to a disturbance with an 
energy equal to 50% of the mean bond energy and fig. 7 shows the corresponding 
bond energy as a function of time and bond number.  The disturbance upsets the sys- 
tem in the sense that  it pumps a large energy pulse into the system as soon as possi- 
ble. The cost functional increases 25% as a result entirely due to an increase in 
system energy. The energy fluctuations generated by the disturbance in fig. 8 are 
now as large as the concentration of energy in the target bond. This disturbance 
pulse, however, is not capable of reaching the final bond stretch nor the outer 
dipole 9th bond, and the intensity of the energy in the target bond is exactly the 
same as in the reference case. There is no difference between the optimal fields in 
this case and the one in the reference case in shape or in intensity (see fig. 9). Since 
the disturbance cannot communicate  with the part of the chain that  is being con- 
trolled by the optical field, then the form of  the field does not  change. This example 
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Fig. 7. Bond energy as a function of time and bond number for the 40 atom system example (iii) 
pumped by a designed optimal field in the presence of a worst case disturbance constrained to an 
energy of 1.33 x 10 -4 a.u. There is not sufficient time for the disturbance to affect the dipole or target 

regions, but the aft end of the molecule is influenced by the disturbance. 
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Fig. 8. The worst  case disturbance for a 40 a tom system in example Off) for a final t ime T = 0.06 ps 
under the constraint  that the energy equals 1.33 x 10 -4 a.u. (i.e. the case o f  fig. 7). 
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strained to an energy of  1.33 x 10 -4 a . u .  
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supports the intuition that it is favourable to choose the important target and 
dipole bonds as isolated as possible from regions of molecular control uncertainty. 
This can be done, in principle, by creating a larger physical distance between target 
and the disturbance or in some cases shortening the control time interval. The lat- 
ter approach in general, however, will necessitate a more intense field if the same 
target goal is to be achieved. 

4. Conclus ions  

This paper proposed a robust control method in the form of a minimax problem 
to design optical laser pulses for molecular control objectives of a truncated mole- 
cule affected by disturbance elements. It was assumed that all physical system 
uncertainties and non-linear terms beyond the core harmonic system are repre- 
sented as an energy bounded disturbance and the basic elements of Hoo theory are 
employed to design robust laser pulses for the molecular objectives in the truncated 
subsystem. The equations for the solution to this minimax problem were obtained 
using a Lagrange parameter for the energy constraint. Sufficiency for the existence 
of minimax solutions was shown to be related to the existence of a continuous solu- 
tion to a Ricatti equation that depended on the Lagrange parameter. We intro- 
duced a straightforward algorithm for finding the lower bound of the disturbance 
parameters and discovered a scaling law for small disturbances using the asympto- 
tic expression for large disturbance parameters. As an example the robust optimal 
control field was obtained for stretching the 5th bond in a truncated molecular 
chain where the effects of the remainder of the chain are modelled as disturbances. 
Only the 1 st and 9th bond in the chain interacted with the optical field and the dis- 
turbance energies in the examples were compared with the mean bond kinetic ener- 
gies calculated from the reference case where no disturbance field was present. 

Clearly the worst case disturbance is a very conservative estimate of the influence 
the surroundings can have on the molecular objectives. One aim of this study was to 
show how sensitive certain configurations of target and dipole bonds can be with 
respect to the effect of the disturbance. A molecular system is never entirely isolated 
so in designing control laser pulses it is important to understand what part of the sys- 
tem must be modeled in order to obtain adequate fields. The minimax analysis pro- 
vides an answer to the question of which and how many atoms must be entered into 
the model before the surroundings can be neglected and suggests how the optimal 
field must be changed ifa disturbance of specified energy affects the system. 

In the case where T = 0.2 ps for a 20 atom truncated chain sensitive to outside 
disturbances, with the target bond at the 5th bond of the chain we found that the 
system could reasonably sustain disturbances up to 10% of the original mean bond 
energy of the reference case before the magnitude of the disturbances became so 
large that individual disturbances elsewhere in the chain dominated the energy con- 
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centration in the target bond. The optimal optical field in the 10% disturbance 
case looked very similar to the field obtained in the reference case. This demon- 
strates that the asymptotic expression for the optimal field and disturbance 
obtained in section 2 is valid in the physically reasonable disturbance energy 
regime. Our experience with many other examples of truncated 20 atom chains 
with different objectives and dipole bond configurations showed that the asympto- 
tic expressions tend to be quite accurate in the physically relevant regime. Some 
experimentation with shortening the target time in the example above to T = 0.06 
ps showed no improvement in efficiency in the sense that again approximately 10% 
of the mean bond energy created energy fluctuations in the bonds that were of the 
same intensity as the energy concentrated at the target. In this case the disturbance 
could reach only the 9th dipole bond but not directly the 5th target bond in the 
time interval, but nevertheless, the objective is significantly influenced to decrease 
the final stretch at the target time. When we truncated this same chain at 40 atoms 
instead of 20 atoms for the same final time the disturbance could not reach the final 
stretch or any of the dipole bonds. Consequently the cost functional increased due 
to the change in overall system energy but the bond stretch at the final time did 
not change. This is in complete accordance with intuition and suggests that the 
truncation of a large system should be done in such a fashion that the disturbance 
be kept as far as possible from the important target and dipole bonds. 

The scaling rule in this paper was based on the asymptotic formula for large/3 
and suggests that the most efficient way of countering a disturbance is by simply 
increasing the intensity of the controlling field. This rule seems appropriate for all 
the 20 atom chains examples we investigated for various objectives and dipole con- 
figurations, but it is not clear whether it is applicable in general. We tested the 
expression on the peak intensity of the optical field and the disturbance field of var- 
ious examples and found that second order approximations actually predict the 
peak intensities to a few percent accuracy. 

If the subsystem under consideration has been obtained from linearization of a 
non-linear, larger system, then the coupling matrices may well be time dependent 
which will necessitate a time dependent approach to the minimax problem [8,11]. 
Control field designs for quantum mechanical systems are non-linear but could be 
linearized to yield distributed systems where once again the non-linear parts could 
be modelled as disturbances. Some research in this direction is in progress. 
Another way of treating the robust quantal problem of control design is to use a 
classical approximation and assume that the quantal effects are modeled as distur- 
bances to the underlying classical system. One final point that has not been 
touched upon in this paper is that in the case of truncation one must intelligently 
specify the energy content of the disturbance. Further study needs to be done on 
this matter. A combination of included disturbances expected during the control 
process and the minimax design forms a powerful tool for the control ofmicrophy- 
sical processes. 
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